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Abstract

Background: The polyamines putrescine, spermidine, and spermine are organic cations that are required for cell growth
and differentiation. Ornithine decarboxylase (ODC), the first and rate-limiting enzyme in the polyamine biosynthetic
pathway, is a highly regulated enzyme.

Methodology and Results: To use this enzyme as a potential drug target, the gene encoding putative ornithine
decarboxylase (ODC)-like sequence was cloned from Entamoeba histolytica, a protozoan parasite causing amoebiasis. DNA
sequence analysis revealed an open reading frame (ORF) of ,1,242 bp encoding a putative protein of 413 amino acids with
a calculated molecular mass of 46 kDa and a predicted isoelectric point of 5.61. The E. histolytica putative ODC-like
sequence has 33% sequence identity with human ODC and 36% identity with the Datura stramonium ODC. The ORF is a
single-copy gene located on a 1.9-Mb chromosome. The recombinant putative ODC protein (48 kDa) from E. histolytica was
heterologously expressed in Escherichia coli. Antiserum against recombinant putative ODC protein detected a band of
anticipated size ,46 kDa in E. histolytica whole-cell lysate. Difluoromethylornithine (DFMO), an enzyme-activated
irreversible inhibitor of ODC, had no effect on the recombinant putative ODC from E. histolytica. Comparative modeling of
the three-dimensional structure of E. histolytica putative ODC shows that the putative binding site for DFMO is disrupted by
the substitution of three amino acids—aspartate-332, aspartate-361, and tyrosine-323—by histidine-296, phenylalanine-305,
and asparagine-334, through which this inhibitor interacts with the protein. Amino acid changes in the pocket of the E.
histolytica enzyme resulted in low substrate specificity for ornithine. It is possible that the enzyme has evolved a novel
substrate specificity.

Conclusion: To our knowledge this is the first report on the molecular characterization of putative ODC-like sequence from
E. histolytica. Computer modeling revealed that three of the critical residues required for binding of DFMO to the ODC
enzyme are substituted in E. histolytica, resulting in the likely loss of interactions between the enzyme and DFMO.
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Introduction

Entamoeba histolytica is a unicellular protozoan parasite that

infects about 50 million people each year and may cause

potentially life-threatening diseases such as hemorrhagic colitis

and/or extraintestinal abscesses [1]. The infections are primarily

treated by antiamoebic therapy. Drugs of choice for invasive

amoebiasis are tissue-active agents such as metronidazole,

tinidazole, and chloroquine [2]. Although drug resistance to E.

histolytica does not appear to be a serious problem, there are

occasional reports of failure with metronidazole suggesting the

possibility of development of clinical drug resistance [3].

Polyamine biosynthetic pathway is the critical regulator of cell

growth, differentiation, and cell death [4–6]. Polyamines are

involved in nucleic acid packaging, DNA replication, apoptosis,

transcription, and translation [7]. The polyamine biosynthetic

pathway is a potential target for therapeutic agents against various

hyperproliferative disorders, particularly cancer [8–10]. Given the

importance of the polyamine biosynthetic pathway as a validated

therapeutic target in protozoan parasites [11–14], we decided to

further investigate this pathway in E. histolytica in the hope of

extending our attempts at drug discovery to include this medically

important parasite.

Ornithine decarboxylase (ODC; EC 4.1.1.17) is the first rate-

limiting enzyme in polyamine biosynthesis, catalyzing the

decarboxylation of L-ornithine to putrescine. This enzyme is

found in a variety of systems ranging from bacteria [15] and

protozoa [16] to plants [17] and mammals [18]. The rapid

activation of the enzyme by various stimuli such as hormones,

growth factors, or stress makes this enzyme a vital mediator in the

regulation of polyamine pathway. ODC, like most amino acid

decarboxylases, requires pyridoxal-59-phosphate (PLP) as a

cofactor [19]. E. histolytica ODC protein has been biochemically

purified from trophozoites of the parasite [20]. Analytical
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electrophoresis revealed the presence of a major polypeptide of

45 kDa and scarcely noticeable amounts of two other proteins of

70 and 120 kDa. The major polypeptide exhibited amino-terminal

sequence homology in the range of 40%–73% with ODCs of other

organisms [20].

Biosynthesis of polyamines in parasites has been exploited as a

target to control disease caused by several parasites with specific

inhibitors of ODC such as a-difluoromethylornithine (DFMO),

which is a structural analog of ornithine. DFMO has been found

to be an efficient therapeutic agent against ODC up-regulation

[13,14,21–23]. It is a specific and irreversible inhibitor of ODC,

and previous studies have shown that DFMO inhibits growth of

Giardia lamblia [24], Acanthamoeba castellani [25], Plasmodium

falciparum, and some Trypanosoma species [13,14,21,26] but has

no inhibitory effect on E. histolytica ODC [20].

In this paper we report, to our knowledge for the first time,

molecular cloning, expression, and characterization of a putative

ODC-like sequence from E. histolytica, the parasitic protozoan

responsible for amoebiasis. ODC is a PLP-dependent enzyme, and

in the present work the ability of E. histolytica putative ODC to

form complexes with PLP and DFMO was investigated using

modeling of the three-dimensional structure.

Materials and Methods

Reagents
Restriction enzymes Pfu and Taq DNA polymerases were

obtained from MBI Fermantas. All other chemicals were of

analytical grade and were available commercially.

Parasite and culture conditions
All experiments were carried out with E. histolytica strain HM-

1:IMSS clone 6, which was obtained from William A. Petri

(University of Virginia). The cells were maintained and grown in

TYI-33 medium supplemented with 15% adult bovine serum, 2%

Diamond’s vitamin mix, and antibiotic (0.3 units/ml penicillin and

0.25 mg/ml streptomycin). Cell viability was determined by

microscopy using a trypan blue dye exclusion test. Experiments

were conducted with cells that showed .90% viability.

Cloning of putative ODC-like gene sequence from E.
histolytica

A ,1,242 base pair fragment was amplified from the genomic

DNA of E. histolytica using a sense primer with flanking BamH I

site (underlined), 59-CGCGGATCC ATGAAACAAACATCTC-

TAGAAG-39, which codes for amino acid sequence MKQTSLE

at position 1–21 and one extra base, G, and the antisense primer

with a flanking Xho I site (underlined), 59- CCGCTCGAGAG-

CATAGTGTGGAATACCAT-39, which codes for amino acids

GIPHYA at position 1,220–1,239 with two extra bases, A and T.

Polymerase chain reaction was performed in a 50 ml reaction

volume containing 150 ng of genomic DNA, 25 pmol each of

gene-specific forward and reverse primers, 200 mM of each

dNTPs, 2.5 mM MgCl2, and 2.5 units of Taq DNA Polymerase

(MBI Fermentas). PCR cycling conditions were as follows; 94uC
for 10 min, followed by 35 cycles of 94uC for 1 min, 47uC for

45 sec, 72uC for 1:30 min. A final extension was carried out for

10 min at 72uC. A single 1,242 bp PCR product was obtained and

subcloned into pTZ57R T/A vector (Promega, Madison, USA) and

subjected to automated sequencing. Sequence analysis was per-

formed by DNAstar, whereas comparisons with other sequences of

the database were performed using the search algorithm BLAST

[27]. Multiple alignments of amino acid sequences were performed

using CLUSTAL W (http://www.ebi.ac.uk/clustalw/). The phylo-

genetic tree was constructed using PHYLIP style treefile produced by

CLUSTAL W. The ,1242-bp DNA fragment, amplified by Pfu

polymerase (MBI Fermentas), was also cloned into the BamH I-Xho

I site of pET 30a vector (Novagen). The recombinant construct was

transformed into BL21 (DE3) strain of E. coli.

Expression and purification procedure
Expression from the construct pET30a-ODC-like sequence was

induced at O.D. of 0.3 with 1 mM IPTG (isopropyl b-D-

thiogalactoside) (Sigma) at 37uC for different time periods.

Bacteria were then harvested by centrifugation and the cell pellet

was resuspended in binding buffer (50 mM sodium phosphate

buffer, pH 7.5; 10 mM imidazole, pH 7.0; 300 mM sodium

chloride; 2 mM phenylmethylsulphonyl fluoride (PMSF); and

30 ml protease inhibitor cocktail). Lysozyme (100 mg/ml) was added

to the cell suspension and kept on a rocking platform for 30 min at

4uC. The resulting suspension was sonicated six times for 20 s with

1 min intervals. The lysate was centrifuged at 20,000g for 30 min at

4uC. The resulting supernatant, which contained protein, was

loaded onto a pre-equilibrated Ni-NTA agarose beads (Ni2+-

nitrilotriacetate)-agarose beads (Qiagen). The mixture was kept on

a rocking platform for 2 h at 4uC. It was centrifuged at 400 g for

30 min at 4uC. The supernatant was discarded and pellet was

washed thrice with wash buffer (50 mM sodium phosphate buffer,

pH 7.5; 50 mM imidazole, pH 7.0; 300 mM sodium chloride;

2 mM phenylmethylsulphonyl fluoride [PMSF]; and 30 ml protease

inhibitor cocktail). The protein was eluted with increasing

concentrations of imidazole, pH 7.0. The imidazole was removed

by dialysis in 20 mM sodium phosphate buffer, pH 7.5. The purified

protein was aliquoted and stored at 280uC.

Nucleic acid isolation, pulsed-field gradient gel
electrophoresis, and hybridization analysis

Genomic DNA was digested with the enzymes XhoI and

HindIII and subjected to electrophoresis in 0.8 % agarose gels.

The fragments were transferred to nylon membranes (Amersham

Pharmacia Biotech) and subjected to Southern blot analysis. For

Northern blot analysis, 15 mg of total RNA was fractionated by

denaturing agarose gel electrophoresis and transferred onto nylon

Author Summary

Entamoeba histolytica is a unicellular protozoan parasite
that infects about 50 million people each year and can
cause potentially life-threatening diseases such as hemor-
rhagic colitis and extraintestinal abscesses. The infections
are primarily treated by antiamoebic therapy. Drugs of
choice for invasive amoebiasis are tissue-active agents,
such as metronidazole, tinidazole, and chloroquine.
Although drug resistance to E. histolytica does not appear
to be a serious problem, there are occasional reports of
failure with metronidazole, suggesting that clinical drug
resistance may be developing. When identifying a drug
target, it is important that the putative target be absent in
the host, or, if it is present in the host, that the homologue
in the parasite be substantially different from the host
homologue so that it can be exploited as a drug target.
Such is the case with the enzymes involved in polyamine
biosynthesis, a pathway that has been exploited as a target
to control disease caused by several parasites. We report,
to our knowledge for the first time, molecular cloning,
expression, and characterization of the ornithine decar-
boxylase from E. histolytica, a rate limiting enzyme in the
polyamine biosynthesis pathway.
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membrane following standard procedures. Pulsed-field gradient

gel electrophoresis (PFGE) was carried out essentially as described

earlier [28]. The agarose blocks containing the cells were subjected

to PFGE in 1.2% agarose gels using the Gene Navigator system

(Pharmacia). The pulse conditions used were 70 s for 15 h, 120 s

for 14 h, and 200 s for 7 h at 5.5 V cm21. Saccharomyces cerevisiae

chromosomes were used as size markers. Following the transfer of

DNA, RNA, and chromosomes onto nylon membranes, the

nucleic acids were UV cross-linked to the membrane in a

Stratagene UV cross-linker. Prehybridization was done at 65uC
for 4 h in a buffer containing 0.5 M sodium phosphate; 7% SDS;

1mM EDTA, pH 8.0; and 100 mg/ml sheared denatured salmon

sperm DNA. The blots were hybridized with denatured a-

[PPPP32P]-dCTP-labeled DNA probe (PCR probe described for

the E. histolytica putative ODC-coding region) at 10PP6P cpm/ml,

which was labeled by random priming (NEB BlotPPKit, New

England Biolabs). Membranes were washed, air-dried, and

exposed to an imaging plate. The image was developed by

PhosphorImager (Fuji film FLA-5000, Japan) using Image Quant

software (Amersham Biosciences).

Preparation of crude extract of E. histolytica for ODC assay
E. histolytica (16106 cells) were harvested by centrifugation at

16,000 g at 4uC for 10 min, washed with phosphate-buffered

saline, pH 7.4. The cell pellet was resuspended in lysis buffer

(100 mM Tris-Cl, pH 7.5; 150 mM sodium chloride; 2 mM

PMSF; 2 mM iodoacetamide; 2 mM EDTA; 2.5 mM parahy-

droxymercuricbenzoic acid; 2 mM ethylene glycol-bis (amino

ether); and 10 mg/ml proteinase cocktail) and incubated on ice for

10 min. The cells were lysed by freeze-thaw in liquid nitrogen and

subjected to sonication for 10 sec with 1 min interval at 4uC,

thrice. The lysate was centrifuged at 15,000g for 30 min at 4uC
and the supernatant was used for ODC assay, polyamine

estimation, and Western blot analysis as mentioned below.

ODC assay
ODC activity was assayed by following the release of 14CO2

from L- [-14C] ornithine [29]. The standard assay mixture

containing the supernatant, 200 mM PLP; 12.5 mM DTT;

250 mM Tris, pH 7.5; 2 mM ornithine; and 3 mCi of the

radiolabeled ornithine were incubated at 37uC for 1 h. The

reaction was terminated by injecting 5 N H2SO4. Activity is

expressed in enzyme units in which one unit is nmol of CO2 /mg

protein/h. The assay was repeated thrice. Protein concentrations

were determined by the method of Bradford [30] using bovine

serum albumin as standard.

Polyamine analysis
Quantitative determination of polyamines in crude lysates of E.

histolytica was performed by C18 reversed-phase high performance

liquid chromatography after precolumn derivatization with dansyl

chloride [31]. The results were based on three separate

determinations.

Antibody production
The purified recombinant putative ODC-like protein (20 mg)

was subcutaneously injected in mice using Freund’s complete

adjuvant, followed by two booster doses of recombinant putative

ODC-like protein (15 mg) with incomplete adjuvant at 2 wk

intervals to produce polyclonal antibody against the recombinant

putative ODC-like protein. The mice were bled after 2 wk after

the second booster, and sera were collected and used for Western

blot analysis.

Western blot analysis
Recombinant putative ODC-like protein and cell lysate (100 mg of

protein) from E. histolytica were fractionated by SDS/PAGE blotted

on to nitrocellulose membrane using electrophoretic transfer cell

(Bio-Rad). Western blot analysis was carried out using the ECL

(enhanced chemiluminescence) kit (Amersham Biosciences) accord-

ing to the manufacturer’s protocol. Anti-polyhistidine (mouse IgG2a

isotype, Sigma) and polyclonal antibody (1:500 dilution) against

purified recombinant E. histolytica putative ODC generated in mice

were used for Western blot analysis.

Structural modeling of E. histolytica putative ODC and
analysis of the binding site

The structure of the Trypanosoma brucei ODC mutant in complex

with DFMO [32] was used as a template to model E. histolytica

ODC. In this mutant structure, lysine 69 has been mutated by

alanine (K69A). STAMP (structural alignment of multiple

proteins) [33], was used for structural alignment of three ODCs

from T. brucei (2TOD) (ExPASy [http://expasy.org/] accession

number: P07805), H. sapiens (1D7K) (ExPASy accession number:

P11926) and M. musculus (7ODC) (ExPASy accession number:

P00860). Later, the program JOY (version 5) [34] was used to

align and merge three structurally aligned ODCs with the

sequence of E. histolytica putative ODC such that properties of

both the structure-based alignment for the homologues of known

three-dimensional structures and the sequence-based alignment

involving E. histolytica putative ODC are reflected in the final

alignment used for modeling (Figure 1A). JOY represents

structural information and annotates each amino acid residue

according to its structural environment. JOY uses local structural

features calculated from the atomic coordinates in a PDB file. The

three-dimensional model of E. histolytica putative ODC in complex

with PLP and DFMO has been built based on the crystal structure

of T. brucei ODC by using the program MODELLER [35].

MODELLER generates a three-dimensional structure of a given

protein sequence (target) based primarily on its alignment to one

or more proteins of known structure (template/templates). The

modeling process consists of fold assignment, target-template

alignment, structure building, and evaluation. MODELLER

implements comparative protein structure modeling by satisfying

spatial restraints [36,37] and performs tasks such as de novo

modeling of loops, comparison of protein structures, optimization

of various models of protein structures, etc. Interactive graphics

like SYBYL (Tripos, St. Louis, Missouri, United States) was used

for energy minimization of the modeled structure to relieve the

short contacts, if any.

Energy minimization
Modeled E. histolytica putative ODC was subjected to energy

minimization using the AMBER force field [38] encoded in the

SYBYL software. Energy minimization was done in order to

rectify all stereochemical inconsistencies and short contacts that

may be present in the initial model.

Results

Sequence analysis and genomic organization
In order to clone the gene encoding putative ODC-like gene,

PCR was performed using specific oligonucleotides (as described

in the Methods section), whose sequence was based on Genome

Sequencing Project of E. histolytica (http://www.tigr.org). Exam-

ination of the E. histolytica database predicts a single ODC gene

(http://pathema.tigr.org). A single open reading frame consisting

of ,1,242 bp was obtained, cloned, and sequenced. (E. histolytica

Novel Drug Target of Entamoeba histolytica
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ODC gene, GenBank [http://www.ncbi.nlm.nih.gov/Genbank/]

accession number AY929249).

The open reading frame coded for a putative polypeptide of 413

amino acids, with a predicted molecular mass of ,46 kDa. The

predicted isoelectric point (pI) of E. histolytica putative ODC-like

protein (GenBank accession number AAX35675) was determined

to be 5.61, comparable to those of proteins from L. donovani

(GenBank accession number P27116) (pI 5.29), and T. brucei

(GenBank accession number AAA30219) (pI 5.46) (Figure 1).

There was only 33% sequence identity with human ODC

(GenBank accession number AAA59967), 32% identity with T.

brucei (GenBank accession number AAA30219), and 36% identity

with Datura stramonium ODC (GenBank accession number

CAA61121) sequences (Figure 1B). The sequences of the

mammalian ODC has some highly conserved amino acids and

regions that are reported to be essential for catalytic activity and

dimerization [39–41], and these were also found in the putative

ODC-like sequence of E. histolytica. The putative ODC-like

sequence was 413 amino acids smaller than ODCs from T. brucei,

Homo sapiens, and D. stramonium (Figure 1B). The residue that is

essential for dimerization of ODC monomers, mediated by

glycine-387 in mammals [42], was found to have equivalents in

the sequence of the E. histolytica putative ODC-like protein at

position glycine-361. The sequence motif PFYAVKCN at position

64–71 of mammalian ODC, which contains the lysine-69 residue

to which the cofactor pyridoxal-59-phosphate binds, is present at

position 53–60 of the E. histolytica putative ODC-like protein,

although with changes of phenylalanine to cysteine and tyrosine to

phenylalanine. The region GPSCNGSD at position 331–338 in

the E. histolytica putative ODC-like protein is probably equivalent

                               10        20        30        40        50
2toda_1    (  37 )                                       gdpfFvAdlGdIvrK
1d7ka      (   7 ) eefdchfldegftakdiLdqkInevsssddkdAfYVAdLgdILkk
7odca_1    (   2 )    ssftkdefdChILdegftakdILdqk-i---n--dkdAfYVAdLGdILkK
36.t00008             -----------MKQTSLEVKEFALNLISQFEPENQPLGFWIFDTEGVEKA 
                                                            bbbbbaaaaaaa 

                               60        70        80        90        100
2toda_1    (  52 ) hetWkkcLprVtpfYaVaCNddwrVLgtLaalgTGFdCasnteIqrVrgi
1d7ka      (  52 )    HlrWlkaLprVtPFYA-VCNdskAIVkTLaaTgTGFdCaskteIqlVqsl
7odca_1    (  52 )    hlrWlkALprVtPFYaVkCNdsrAIVSTLaaigTGFdCaskteIqlVqgL
36.t00008             VERWKKNMPTVRPCFAVKCNPEPHLVKLLGELGCGFDCASLNEIKEVLDL 
                      aaaaaaa   bbbbbb      aaaaaaaaa   bbbb  aaaaaaaa

                               110       120       130       140       150
2toda_1    ( 102 ) gVppekIiYAnPcKqishIryArdSgVdvMTFdcvdELekVaktHpkAkM
1d7ka      ( 102 ) gVpperIIYAnPcKqvsqIkyAanngVqmMTFdsevELmkVarAHpkAkL
7odca_1    ( 102 ) gVpaerVIYAnPcKqvsqIkyAasngVqmMTFdseiELmkVarAHpkAkL
36.t00008             GFNPEDITYSQTFKPYNQLIEASHLGINHTIVDSIDEVQKIAKYAPKMGI 
                         333bbb      aaaaaaaaa    bbbb  aaaaaaaaaa    bb 

                               160       170       180       190       200
2toda_1    ( 152 )    VLrI-stL---------svkfGakvedCrfiLeqAkklnIdVTGVSFhVg
1d7ka      ( 152 )    VLrIatd-dskavcrls-vkfGatlrtSrlLLerAkelnIdVvGVSFhVg
7odca_1    ( 152 )    VLrI-------------atkfGatlktSrlLLerAkelnIdViGVSFhVg
36.t00008             MIRIMENDTSAGHVFGE--KFGLHDDEVEIVLKEIKDKGLNLDGVHFHVG 
                      bbb                     aaaaaaaaaaaaa   bbbbbb

                               210       220       230       240       250
2toda_1    ( 200 )    sgstdastFaqAIsdSrfVFdmGtelgfnMhiLDIGGGFpGtrdaplkFe
1d7ka      ( 200 )    sgCtdpetFvqAIsdArcVFdmGaevgFsMyLLDIGGGFpGsedvklkFe
7odca_1    ( 200 )    sgctdpdtFvqAVsdArcVFdmAteVgFsMhLLDIGGGFpGsedtklkFe
36.t00008             SDSHNSEVFTKALTKARNTVTLAEQFGMKPYLIDIGGGFS----QVAPFE 
                            aaaaaaaaaaaaaaaaaaa      bbb              aa 

                               260       270       280       290       300
2toda_1    ( 250 ) eIAgvInnaLekhFp-pdlkltIVAePGrYYVasAFtLaVnViakkvt--
1d7ka      ( 250 )    eITgvInpaLdkyFpsd-sgVrIIAEPGrYYVasAFtLAVNIiakkivlk
7odca_1    ( 250 )    eITsvInpALdkyFpsd-sgVrIIAePGrYYVasAFtLAVNIiakktv--
36.t00008             EFAATIEKTIKELEFPER--TRFIAEPGRYMASNAFHLVSSLHGKRVRIQ 
                      aaaaaaaaaaaaa        bbbb   aaaa333bbbbbbbbbbbbb

                               310       320       330       340       350
2toda_1    ( 297 )    ---paqsFmYyVndGvygSFNCilydhavvrPlpqrepipneklypSsVw
1d7ka      ( 299 ) eqte-qtFmYyVndGvygSFNCilydhahvkpllqkrpkpderyysSsIw
7odca_1    ( 297 )    --we-qtFmYyVndGvygSFNCilydhahvkAllqkrpkpdekyysSsIw
36.t00008             NGKK--QIEYTSGDGLHGSFGCCIWFEKQKSCECITQKVNENKMYESIIY 
                            bbbbbb         aaaa       bb          bbbbbb 

                               360       370       380       390       400
2toda_1    ( 357 )    GpTcdglDqIveryyLpeMqvgewLlFedMGAyTvvgtssfngfqsPtiy
1d7ka      ( 357 )    GPTcdglDrIvercdLpeMhvgdWMLFenMGAyTvaaAstfngfqrptiy
7odca_1    ( 357 )    GPTcdglDrIvercnlPeMhvgdwMlFenMGAyTvaaAstfngfqrpniy
36.t00008             GPSCNGSDKVAT-QELPEMEPGKDWLLFPNMGAYTISMATNFNGFEERNI 
                              bbbbbbbb       bbbb       333   333    bbb 

                               410       420
2toda_1    ( 407 )    yvvs
1d7ka      ( 407 )    YVMsgpawqlmqqfqnpdfpp
7odca_1    ( 407 )    yVMsrpmwqlMk
36.t00008             YTLPLKSTKIIQIPKSIECNS 
                      bb

a

Human            1 -------------------------MNNFGNEEFDCHFLDEGFTAKDILDQKINEVSSSD
T.brucei         1 -------------------------MDIVVNDDLSCRFLEG-FNTRDALCKKISMN-TCD
Datura           1 MAGQTVIVSGLNPAAILQSTIGGATPAPAAENDHTRKVVPLSRDALQDFMVSIITQKLQD
E.histolytica    1 -------------------------------------MKQTSLEVKEFALNLISQFEPEN

Human           36 DKDAFYVADLGDILKKHLRWLKALPRVTPFYAVKCNDSKAIVKTLAATGTGFDCASKTEI
T.brucei        34 EGDPFFVADLGDIVRKHETWKKCLPRVTPFYAVKCNDDWRVLGTLAALGTGFDCASNTEI
Datura          61 EKQPFYVLDLGEVVSLMDQWNAGLPNIRPFYAVKCNPEPSFLSMLSAMGSNFDCASRAEI
E.histolytica   24 QPLGFWIFDTEGVEKAVERWKKNMPTVRPCFAVKCNPEPHLVKLLGELGCGFDCASLNEI

- - - - - - - - 

Human           96 QLVQSLGVPPERIIYANPCKQVSQIKYAANNGVQMMTFDSEVELMKVARAHPKAKLVLRI
T.brucei        94 QRVRGIGVPPEKIIYANPCKQISHIRYARDSGVDVMTFDCVDELEKVAKTHPKAKMVLRI
Datura         121 EYVLSLGISPDRIVFANPCKPESDIIFAAKVGVNLTTFDSEDEVYKIRKHHPKCELLLRI
E.histolytica   84 KEVLDLGFNPEDITYSQTFKPYNQLIEASHLGINHTIVDSIDEVQKIAKYAPKMGIMIRI

Human          156 A-TDDSKAVCRLSVKFGATLRTSRLLLERAKELNIDVVGVSFHVGSGCTDPETFVQAISD
T.brucei       154 S-TDDSLARCRLSVKFGAKVEDCRFILEQAKKLNIDVTGVSFHVGSGSTDASTFAQAISD
Datura         181 KPMDDGNARCPMGPKYGALPEEVEPLLRTAQAARLTVSGVSFHIGSGDADSKAYLGAIAA
E.histolytica  144 M-ENDTSAGHVFGEKFGLHDDEVEIVLKEIKDKGLNLDGVHFHVGSDSHNSEVFTKALTK

Human          215 ARCVFDMGAEVGFS-MYLLDIGGGFPGSEDVKLKFEEITGVINPALDKYFPSDSGVRIIA
T.brucei       213 SRFVFDMGTELGFN-MHILDIGGGFPGTRDAPLKFEEIAGVINNALEKHFPPDLKLTIVA
Datura         241 AKGVFETAARFGMSKMTVLDIGGGFTSG----HQFTTASAAVRSALEQHFHDEQELTIIA
E.histolytica  203 ARNTVTLAEQFGMK-PYLIDIGGGFSQVAP----FEEFAATIEKTIKELEFPER-TRFIA

Human          274 EPGRYYVASAFTLAVNIIAKKIVLKEQTGSDDEDESSEQTFMYYVNDGVYGSFNCILYDH
T.brucei       272 EPGRYYVASAFTLAVNVIAKKVTPGVQTDVGAHAESNAQSFMYYVNDGVYGSFNCILYDH
Datura         297 EPGRFFAETAFTLATTIIGKRVRG--------------ELREYWINDGLYGSMNCVLYDH
E.histolytica  257 EPGRYMASNAFHLVSSLHGKRVRIQ----------NGKKQIEYTSGDGLHGSFGCCIWFE

Human          334 AHVKPLLQKRPKPDE-------KYYSSSIWGPTCDGLDRIVERCDLPEMHVGDWMLFENM
T.brucei       332 AVVRPLPQREPIPNE-------KLYPSSVWGPTCDGLDQIVERYYLPEMQVGEWLLFEDM
Datura         343 ATVNATPLACMSNRSNLNCGGSKTFPSTVFGPTCDALDTVLRDYQLPELQVNDWLIFPNM
E.histolytica  307 KQKSCECITQKVNEN------TKMYESIIYGPSCNGSDKVATQELPEMEPGKDWLLFPNM
                                                 ***** 

Human          387 GAYTVAAASTFNGFQRPTIYYVMSGPAWQLMQQFQNPDFPPEVEEQDASTLPVSCAWESG
T.brucei       385 GAYTVVGTSSFNGFQSPTIYYVVSGLPDHVVRELKSQKS---------------------
Datura         403 GAYTKAAGSNFNGFNTSAIVTHLAYAYPS-------------------------------
E.histolytica  361 GAYTISMATNFNGFEERNHVIYTLPLKSTKIIQIPKSIECNSVPSLNGIPHYA-------

Human          447 MKRHRAACASASINV 
T.brucei           --------------- 
Datura             --------------- 
E.histolytica      --------------- 

b

Figure 1. Structure-based alignment of ODCs from T. brucei (2toda) (ExPASy accession number: P07805), H. sapiens (1d7ka) (ExPASy
accession number: P11926), M. musculus (7odca) (ExPASy accession number: P00860), and E. histolytica (36.t00008) (GenBank
accession number: Q58P26). (A) The structural environments of the residues in the known structures are encoded in the representation: Upper
case letters are solvent-inaccessible amino acids; lower case letters are solvent accessible; italicized letters are residues with a positive w (one of the
Ramachandran angles); bold letters indicate a side chain hydrogen bonded to the main chain amide; underlined letters indicate a side chain
hydrogen bonded to the main chain carbonyl. The numbers within parenthesis represent the first residue of the given protein in a block. Conserved
a-helical, 310 helical, and b-strand regions are indicated at the end of every alignment block as a, 3, and b respectively. Figure produced using JOY
[34]. (B) Multiple sequence alignment of putative ODC-like sequence from E. histolytica (GenBank accession number AAX35675), T. brucei ODC
(GenBank accession number AAA30219), human ODC (GenBank accession number AAA59967), and Datura stramonium ODC (GenBank accession
number CAA61121) using ClustalW. The amino acids are numbered to the left of the respective sequences. Residues that are identical or similar to
other ODCs are indicated in black showing complete identity, and grey when they are conserved in at least three sequences. Short dashed line below
the sequence represents the pyridoxal phosphate binding site. Line of asterisks (*) represents the DFMO binding site.
doi:10.1371/journal.pntd.0000115.g001
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to consensus sequence GPTCDGLD of the ODC sequences of

various eukaryotes. This sequence contains cysteine-360 in mam-

malian ODC, which is the major binding site of a-difluoromethy-

lornithine (DFMO) [40]. The corresponding cysteine-334 is

conserved in E. histolytica putative ODC-like protein. The overall

amino acid homology of E. histolytica putative ODC with the

mammalian ODC is low, but highly conserved signature motifs

responsible for dimerization and catalytic activity were present.

Another signature sequence, as predicted by PROSITE, D(I/

V)GGGF, is present across varied sequences without exception.

Other highly conserved amino acid stretches, i.e., FDCAS, EPGR,

FNGF, and GAYT, are also consistently conserved, though the

functional significance of these stretches is not known.

A phylogenetic tree was constructed using the E. histolytica

putative ODC-like sequence and other representative ODC

sequences (Figure 2). The nearest homologue to the amoebic

protein, as revealed by the tree, is the plant D. stramonium. The

human ODC sequence seems to be farthest from the amoebic one.

Among kinetoplastids, L. donovani appears to be the closest

homologue, while Trypanosoma not clustering with L. donovani, is

quite distantly related.

To determine the E. histolytica putative ODC-like gene copy

number, Southern blot studies were performed as described in

Materials and Methods, using the 1,242-bp PCR product as a

probe (Figure 3). The enzymes used for Southern analysis were

Xho I and Hind III, which have no recognition sites in the E.

histolytica putative ODC-like gene sequence. A single band was

obtained in each case (Figure 3A), demonstrating that it is a single-

copy gene. A PFGE blot probed with the 32P labeled 1,242 bp

ODC PCR fragment, hybridized to a 1.9 Mb size chromosome.

(Figure 3B). Northern blotting of E. histolytica total RNA and PCR-

generated ,1,242-bp gene probe, revealed two transcripts of ,4.8

and ,3.5 kb (Figure 3C).

Overexpression and purification of full-length
E. histolytica putative ODC-like protein in E. coli

In order to characterize the recombinant protein, the gene

sequence encoding the E. histolytica putative ODC-like protein was

cloned in-frame in a pET-30a expression vector with its own start

ATG codon. The resultant pET-30a E. histolytica putative ODC-

like construct was transformed into E. coli, and protein expression

was induced as described in Materials and Methods. A protein

with molecular weight that matched the estimated ,48 kDa

Figure 2. Phylogenetic tree using the amino acid sequences of
putative ODC from E. histolytica and ODCs from other
organisms. The TreeView program in the ClustalW displayed the
phyletic trees derived from the multiple alignments.
doi:10.1371/journal.pntd.0000115.g002

Figure 3. Southern blot analysis of E. histolytica putative ODC-like gene. (A) Lanes 1 and 2, restriction digest of E. histolytica genomic DNA
with XhoI and HindIII, respectively. Lane 3 represents the DNA molecular weight marker and sizes are indicated on the right of the figure. The blot
was probed with 1,242 bp full-length putative ODC-like gene. (B) PFGE analysis of E. histolytica indicating chromosomal localization of the ODC gene.
The blot was probed with the putative ODC-like gene probe. The arrow shows a 1.9 Mb hybridizing band of putative ODC. (C) Northern blot analysis
of mRNA from E. histolytica. Lane 1, total RNA from E. histolytica probed with 1,242 bp full-length putative ODC-like gene; lane 2, molecular weight
marker.
doi:10.1371/journal.pntd.0000115.g003
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predicted by the amino acid composition of E. histolytica putative

ODC-like protein with His-tag and S-tag present at its N-terminal

end was induced (Figure 4). The recombinant protein was purified

on a Ni2+-NTA affinity chromatography column (Figure 4A and

4B). To further confirm the size of the protein, a Western blot was

done with anti-His antibody that revealed the band of purified

product (, 48 kDa) (Figure 4C). Recombinant E. histolytica

putative ODC-like protein was used to raise polyclonal antibody

in BALB/c mice as described in Materials and Methods. The

antiserum recognized a ,48 kDa fusion protein on a Western blot

of purified recombinant E. histolytica putative ODC-like fusion

protein (Figure 4D). The same antiserum detected a band of

anticipated E. histolytica putative ODC at size ,46 kDa in Western

blots of parasite cell extracts, in agreement with the value

calculated from the predicted sequence (Figure 4E). Purification

of His-tagged E. histolytica putative ODC-like protein by metal

affinity chromatography yielded ,3–4 mg of pure protein from a

1-liter bacterial culture.

E. histolytica ODC activity
ODC activity was measured in the crude E. histolytica lysates and

in the recombinant putative ODC-like protein. Detailed study was

limited by its remarkable instability. Addition of dithiothreitol

(2 mM DTT), a known stabilizer of mammalian ODC [43], to the

purified enzyme samples did not improve the stability of the

enzyme or its activity. However, we were able to measure the

activity by adding 0.002% BRIJ-35 to the reaction mix. The

activity obtained in the crude lysate was 4.860.8 nmol h21 mg21

protein, and the recombinant protein gave an activity of

1,31167.0 nmol h21 mg21 protein (Table 1). Addition of DFMO

(10 mM) to the recombinant ODC protein did not have any affect

on the ODC activity (1,085615 nmol h21 mg21 protein). The

values obtained were not significantly different from that of the

control with no DFMO. The Km value for the substrate ornithine

was 1.5 mM. The activity obtained here for the recombinant

protein was much lower than that reported earlier for the purified

protein from E. histolytica [20]. Ammonium sulfate purification of

the His-tagged recombinant ODC protein from E. histolytica did

not improve the activity of this recombinant protein. Since we

were not able to obtain higher Km values using ornithine as the

substrate, we checked substrate preference. Decarboxylation of L-

arginine and L-lysine was also measured in order to check the

substrate preference of the recombinant protein. In the ODC

assay we found no activity using arginine and lysine as the

substrate.

Figure 4. Overexpression and purification of E. histolytica putative ornithine decarboxylase-like protein. (A) Coomassie blue staining of
SDS/PAGE showing overexpression of full-length E. histolytica putative ODC-like protein in E. coli. The pET 30a bacterial extract after induction (lanes 1
and 2) at 3 h and 1 h, respectively with 1mM IPTG and before induction (lane 3). The arrow shows the induced recombinant putative ODC-like
protein. The broad-range protein MW marker (lane 4) (BioRad) was used to identify the size of recombinant protein. (B) Purification of putative ODC-
likeprotein on Ni2+ affinity resin. Lanes 1–4, eluted fractions showing purified putative ODC-like protein from affinity column; lanes 5, 6, and 8 are
washes; lane 7, broad-range protein MW marker (BioRad); lane 9, supernatant from the crude lysate. (C) Western blot using anti-His antibody. Western
blot analysis of different concentrations of purified putative ODC-His fusion recombinant protein. Lanes 1–5 represent 25, 20, 18, 15, and 5 mg of
recombinant proteins, respectively. (D) Western blot using anti-E. histolytica ODC. Lanes 1–3 represent 2, 3, and 6 mg of purified recombinant protein.
Prestained broad-range protein molecular weight marker (BioRad) was used to identify the size of the protein on the Western blot. (E) Western blot
using anti-E. histolytica ODC. Lane 1, purified recombinant protein. Lane 2, E. histolytica lysate. Prestained broad range protein molecular weight
marker (BioRad) was used to identify the size of the protein on the Western blot.
doi:10.1371/journal.pntd.0000115.g004

Table 1. Analysis of ODC activity and polyamine levels of
E. histolytica

Sample
ODC activity (nmol h21

mg21 protein)
Intracellular polyamine levels
(nmol mg21 protein)

Putrescine Spermidine

Crude lysate 4.860.8 13766.4 6.960.2

Levels of polyamines in the lysates were detected by high-performance liquid
chromatography (HPLC). Results are mean6standard deviation values of three
independent determinations.
doi:10.1371/journal.pntd.0000115.t001
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Polyamine levels in E. histolytica
Analysis of polyamine content of E. histolytica revealed substantial

levels of putrescine (13766.4 nmol/mg protein) compared to

spermidine, which is present in very low amounts (6.960.2 nmol/

mg protein). Spermine was not detected in the lysate (Table 1).

Structural analysis of E. histolytica putative ODC
E. histolytica putative ODC-like protein is 413 amino acids long,

with 32% sequence identity with the ODCs of T. brucei and H. sapiens.

We looked for two important motifs in the sequence of ODC that are

essential for binding of DFMO and PLP. The homologues of known

three-dimensional structure complexed with DFMO show that the

amino acid motif GPSCNGSD corresponds to the binding site for

DFMO. DFMO is known to bind to cysteine in this motif. This

cysteine is well conserved in the ODC from all three organisms (T.

brucei, H. sapiens, and E. histolytica). Despite the presence of the

cysteine, E. histolytica putative ODC is not inhibited by DFMO.

Concentration of DFMO as high as 10 mM did not inhibit the

enzyme activity in vitro. The lysine in the PCFAVKCN motif is an

important residue for the interaction of PLP with ODC, which is well

conserved in ODC from all three organisms discussed above.

Structural analysis of the E. histolytica putative ODC is shown in

Figure 5. Known three-dimensional structural analysis suggests that

DFMO, which can inhibit T. brucei ODC, makes a hydrogen bond

(H-bond) with three residues in the two chains of ODC. The

nitrogen (e) of DFMO forms an H-bond with aspartate-332, and

water mediates H-bonds with aspartate-361 and tyrosine-323, both

from the same chain (Figure 5A). All the three residues mentioned

above with which DFMO is interacting are replaced in E. histolytica

putative ODC. Tyrosine-323, aspartate-332, and aspartate-361 of

the T. brucei ODC are substituted by histidine-296, phenylalanine-

305, and asparagine-334 respectively in the E. histolytica putative

ODC. The distance between the nitrogen atom (e) of DFMO and

asparagine-334 is more than 3.4Å in E. histolytica and hence unable to

form an H-bond. These three residues have been labeled in the

modeled structure (Figure 5B) of E. histolytica.

It should be noted that a deliberately unrealistic model of the E.

histolytica putative ODC in complex with DFMO was generated in

order to understand why DFMO does not bind to E. histolytica

putative ODC. The overall conformation of modeled E. histolytica

putative ODC in complex with DFMO and PLP is not very

different from that of the T. brucei ODC. The site of PLP binding is

fully conserved, thus E. histolytica putative ODC should be able to

accommodate it. It is possible that the substitution of important

interacting amino acids in E. histolytica putative ODC, makes

DFMO unable to bind and hence unable to inhibit the action of E.

histolytica putative ODC. However, this mechanism can be

experimentally proved only by mutating these residues, namely

histidine-296, phenylalanine-305, and ssparagine-334, respective-

ly, and determining if the inhibition is restored.

Discussion

The polyamines putrescine, spermidine, and spermine are

polycationic organic compounds present in all eukaryotic cells,

including parasitic protozoans. It was reported earlier that the

polyamines are essential for the proliferation of normal cells and

for differentiation [6].

Ornithine decarboxylase is the rate-limiting enzyme in the de

novo synthesis of polyamines and it catalyses the decarboxylation

of ornithine to putrescine and is a highly regulated enzyme.

Interest in ODC has arisen mainly from the observation that the

development of certain tumors closely correlates with increase in

enzyme activity and that specific inhibitors of ODC reduce or stop

these malignancies [13]. In addition, because of the critical role of

ODC in growth and differentiation of the cells, it has been exploited

as a target to control certain parasitic infections with specific

inhibitors of ODC such as DFMO, a structural analog of ornithine

that has been proved as an efficient therapeutic drug [21].

In this paper, we describe the molecular cloning and

characterization of putative ODC-like gene of E. histolytica, a

protozoan parasite known for causing amoebiasis. We cloned the

putative ODC-like gene of E. histolytica (GenBank accession number

AY929249), and there is only 33% identity to H. sapiens ODC.

Comparison of the putative ODC-like protein sequence from E.

histolytica with other eukaryotic species revealed conserved regions.

The sequence PFYAVKCN, which resembles the consensus

sequences of PXXAVKC(N), contains the lysine (K) to which

the pyridoxal 59 phosphate cofactor binds. Other highly conserved

amino acid stretches, for example, FDCAS, EPGR, and FNGF,

are also conserved, although their functional significance of these

stretches is not known. Phylogenetic tree analysis showed a close

evolutionary relationship of ODC of E. histolytica and the plant D.

stramonium. However, comparison of E. histolytica putative ODC-

like sequences with L. donovani and H. sapiens showed closer

evolutionary relationship with L. donovani.

The recombinant putative ODC from E. histolytica was very

unstable. Addition of 2 mM DTT to the enzyme samples did not

improve the activity or stability of this enzyme. Earlier reports also

show that purified ODC from trophozoites of E. histolytica lost most

of the activity after 24 h in unfractionated samples and was

reported to be very unstable [20]. In our hands even ammonium

sulfate purification of the His-tagged recombinant putative ODC-

like protein from E. histolytica did not improve the activity of this

recombinant protein. The irreversible inhibitor DFMO (a-

difluoromethylornithine) did not inhibit activity of E. histolytica

recombinant ODC (data not shown). Similar observations made

previously rules out the possibility of its being used as a suitable

target for this enzyme [20].

It has been reported that purified preparations of E. histolytica

ODC contain a major polypeptide band of 45 kDa and barely

detectable amounts of two other proteins of 70 and 120 kDa. Both

the 45 and the 70 kDa bands were recognized by a mouse anti-

ODC monoclonal antibody [20]. However, in the present study,

Western blot analysis of the whole cell lysates of E. histolytica using the

polyclonal antibody against E. histolytica putative ODC-like enzyme

showed a single band of approximately 46 kDa, and the same

antibody recognized the recombinant protein of about 48 kDa, the

expected size of the putative ODC-His tag fusion protein.

Analysis of polyamine content of E. histolytica revealed significant

levels of putrescine compared to spermidine, which is present in

very low amounts. Spermine was not detected in the lysates.

Computer modeling revealed that three of the critical residues

required for binding of DFMO to the ODC enzyme are

substituted in E. histolytica resulting in the likely loss of interactions

between the enzyme and DFMO. These residues correspond to

Tyrosine-323, Aspartate-332 and Aspartate-361 in T. brucei ODC

homologue and these are substituted by histidine-296, phenylal-

anine-305, and asparagine-334 respectively in E. histolytica

homologue. It is known that Asp-332 and Asp-361 are essential

catalytic residues that interact with the substrate [44]. Several

members of the ODC family are known to be found in the

GenBank database with amino acid substitutions at the position of

Asp-332 (D332E) [45]; however, our present study shows that

amino acid substitution at Asp-361 (an active site) is unique to E.

histolytica putative ODC. Asp-332 is highly conserved in the ODC

family and is known to play an important role in substrate binding

and catalysis. Shah et al. [45] reported that in Paramecium bursaria
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Figure 5. Structural analysis of E. histolytica putative ODC. (A) Close up view of DFMO (red) and PLP (magenta) binding sites in the crystal
structure of T. brucei ODC. The two chains of T. brucei ODC are shown in blue and orange. Positions of two water molecules are labeled W1 and W2.
Hydrogen bonding is shown in dashed lines. Distances are represented in angstroms (N-e-of DFMO with W1 : 2.70 Å; W1 with Tyr : 2.75 Å; N-e-of
DFMO with Asp-332 : 2.89 Å; N-e-of DFMO with W2 : 3.15 Å; W2 with OD2 of Asp 361: 2.99 Å; W2 with OD1 of Asp-361: 2.89 Å) (B) Close-up view of
DFMO and PLP binding sites in the modeled structure of E. histolytica putative ODC. The color coding is same as mentioned in Figure 5A. The
modeled structure was generated using the program MODELLER. The distance between N-e of DFMO and Asn-334 is more than 3.5Å. Note that the
structure with DFMO bound is a deliberate generation of a model corresponding to an unrealistic situation. This figure has been generated using
PyMOL [47].
doi:10.1371/journal.pntd.0000115.g005
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chlorella virus-1 ornithine decarboxylase (PBCV-1 DC) the

equivalent position is residue 296, which is glutamate; according

to the authors this substitution was a key determinant in the

change in the substrate specificity from ornithine to arginine. This

substitution (D332E) has also been observed in sequences of

antizyme inhibitor, which is an inactive ODC homolog that

regulates ODC activity (GenBank accession numbers: human,

NP_680479; mouse, NP_06125; and rat, NP_072107) [46].

Furthermore, they investigated the impact of the active-site

difference at position 332 on substrate specificity and mutated

Asp332 (E296D). They reported that this substitution alone was

insufficient to produce the observed substrate specificity change in

PBCV-1 DC. In the present study we found a unique E. histolytica

substitution in the putative ODC-like gene sequence both at Asp-

332 and Asp-361; given that the amino acid changes affected the

pocket of the E. histolytica enzyme, we wanted to know whether it

was likely to cause a significant change in substrate specificity. We

checked the activity of the recombinant protein using arginine and

lysine as the substrate and found no enzyme activity. Kinetic

analysis using ornithine as the substrate showed lower kinetic

parameters compared to those reported for well-characterized

enzymes from other organisms. It is possible that this enzyme has

evolved a novel substrate specificity. In view of this situation we

feel that this E. histolytica protein might have other functions, so far

unidentified, including a regulatory role.

In conclusion, characterization of the E. histolytica putative

ODC-like enzyme and expression of the protein will facilitate

studies of structural and functional aspects of the enzyme and

could prove to be an important anti-amoebic target.
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